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Abstract

In Boudt, Dańıelsson, and Laurent (2012) we propose a robust es-
timator for the cDCC model, originally developed by Engle (2002) and
recently modified by Aielli (2009). For the first step estimation of this
model, we propose to use a BIP M-estimator with Student t4 loss func-
tion and robust targeting. The choice of that estimator is supported by
the simulation study in Section 2 of this webappendix. We further elab-
orate on the practical relevance of the model, through a case study on
Apple in Section 3. Additional figures and tables regarding the applica-
tion to forecasting the conditional variance and covariance of exchange
rates and stock returns are also given in Section 3. But first we describe
the estimator for the univariate GARCH model in Section 1.
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1 Robust M-estimators of univariate garch mod-

els

The central problem is to estimate the parameters of a GARCH(1,1) model in

the presence of additive, but once–off, jumps at, i.e.

s∗t = µ+ st (1.1)

st = yt + at (1.2)

yt =
√

htzt where zt
i.i.d.∼ N(0, 1) (1.3)

ht = ω + α1y
2
t−1 + β1ht−1. (1.4)

Muler and Yohai (2008) (MY) recommend the estimation of the BIP–GARCH

using a M–estimator that minimizes the average value of an objective function

ρ(·), called ρ-function, evaluated at the log–transformed squared devolatilized

returns, that downweights the extreme observations and hence the jumps, i.e.

θ̂M = argminθ∈Θ
1

T

T
∑

t=1

ρ

(

log
s2t
ht

)

. (1.5)

The choice of ρ(·) trades off robustness vs. efficiency. The Gaussian QML

estimator is equivalent to M-estimation with ρ-function equal to

ρ0(z) = −z + exp(z),

yielding GARCH estimates that can have a large bias in the presence of out-

liers.

In the case of Gaussian innovations and no outliers, log(s2t/ht) has the

following density function

g0(z) =
1√
2π

exp[−(exp(z)− z)/2].

MY recommend ρ1(z) = 0.8m(g0(z)/0.8), where the m–function is a smoothed
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version of m1(x) = xI(x ≤ 4) + 4I(x > 4), i.e.,

m(x) =















x if ≤ 4

P (x) if 4 < x ≤ 4.3

4.15 if x > 4.3,

and

P (x) =
2

(x1 − x0)3

(

1

4
(x4 − x4

0)−
1

3
(2x0 + x1)(x

3 − x3
0) +

1

2
(x2

0 + 2x0x1)(x
2 − x2

0)

)

− 2x2
0x1

(x1 − x0)
(x− x0)−

1

3(x1 − x0)2
(x− x0)

3 + x,

where x0 = 4 and x1 = 4.3.

The MY ρ–function (ρ1(·)) cannot readily be extended to the multivariate

case, and we hence employ the ρ–function proposed by Boudt and Croux (2010)

(denoted ρ2(·)). It is based on the Student t4 density function and easily

extends to the multivariate case:

ρ2(z) = −z + σ1,4ρt1,4(exp(z)),

where

ρtN,ν
(u) = (N + ν) log(1 +

u

ν − 2
) (1.6)

and

σN,ν = N/E[ρ′tN,ν
(u)u], (1.7)

with u a chi–squared random variable with N degrees of freedom. Under gen-

eral conditions, MY also establish the consistency and asymptotic normality

of these estimators.

A second modification of the MY procedure is that we integrate reweighted

estimates of the mean and variance in the forecasting procedure. The above

definitions of the BIP–GARCH model and M–estimators are for st = s∗t − µ.

MY assume that µ = 0 and thus only focus on the conditional variance. Unfor-

tunately, this assumption may not hold in practice and a jump robust estima-

tor of µ is therefore needed. Furthermore, MY estimate the intercept ω jointly
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with the parameters α and β. As noted by Engle and Mezrich (1996), this is

especially difficult if α and β sum to a number very close to one, as the inter-

cept will be very small but must remain positive. Engle and Mezrich (1996)

propose variance targeting as an estimation procedure where ω is reparameter-

ized as ĥ(1−α1−β1) (with ĥ a consistent estimator of h) before estimating the

remaining parameters. Francq, Horvath, and Zakoian (2011) show that when

the model is misspecified, the variance targeting estimator can be superior to

the QMLE for long-term prediction or Value–at–Risk calculations.

In absence of outliers, natural choices for µ̂ and ĥ are the sample mean and

the sample variance of the returns. However, these estimators are known to

be very sensitive to outliers (e.g. outliers causing a large upward bias in the

sample variance). We therefore consider in the simulation study of the next

section the use of the robust reweighed mean and variance estimators proposed

by Boudt, Croux, and Laurent (2011) and described in Appendix A of Boudt,

Dańıelsson, and Laurent (2012).

2 Simulation

In this section we study the finite sample properties (bias and RMSE) of dif-

ferent estimators for the model in (1.1), more precisely:

• No variance targeting

1. QML-estimator (M-estimator with loss function ρ0);

2. BIP M-estimator with loss function ρ1;

3. BIP M-estimator with loss function ρ2;

• Variance targeting

4. QML-estimator (M-estimator with loss function ρ0), with targeting

towards the sample mean and variance;

5. BIP M-estimator with loss function ρ1, with targeting towards the

robust weighted mean and variance;
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6. BIP M-estimator with loss function ρ2, with targeting towards the

robust weighted mean and variance.

Simulation setup: We generate bivariate returns S∗
t as the sum of a standard

bivariate GARCH(1,1)–cDCC process and a jump process At. Let t1, . . . , tl be

the times when jumps are observed. The simulated returns are given by:

S∗
t =

(

0.05

−0.05

)

+

{

Yt + At if t = ti, 1 ≤ i ≤ l = εT

Yt elsewhere ,

Yt = H
1/2
t Zt, Zt ∼ N(0, I2)

h1,t = 0.1 + 0.1y21,t−1 + 0.8h1,t−1

h2,t = 0.1 + 0.2y22,t−1 + 0.7h2,t−1

Qt = (1− 0.1− 0.8)Q+ 0.1Pt−1Ỹt−1Ỹ
′
t−1Pt−1 + 0.8Qt−1,

where Q1,2 = Q2,1 = 0.4 and t = 1, . . . , T , with T = 2000. The values t1, . . . , tl

were chosen equally spaced and ε = 0%, 1% or 5%. The jump size is the

conditional standard deviation of the corresponding elements of Yt times d for

the first series and negative d for the second series, with d = 3 or 4. The

two assets have the same jump probability and 40% of jumps are cojumps.

Consequently, ε = 1% (resp. 5%) corresponds to on average 0.7% (resp. 3.5%)

of jumps on each series.

2.1 Choice of loss function

Table 1 presents the bias and RMSE for the parameters of the univariate

GARCH model for s∗1,t. Note that for this series, jumps are positive and ε

corresponds to the total percentage of jumps on both series meaning that

ε = 1% (resp. 5%) corresponds to 0.7% (resp. 3.5%) of jumps on each series.

We consider six estimators: the Gaussian QML estimator, the M-estimator

with ρ1 and the more simple estimator ρ2 based on the Student t4, with and

without variance targeting.

First consider the effect of variance targeting which in practically all cases

reduces the RMSE of the robust estimators. A combination of a robust M-
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estimator with variance targeting is therefore recommended over the classical

MY robust M-estimation.

Second, under variance targeting, the M-estimator with ρ2 (i.e., t4) has a

lower RMSE than the one with ρ1. Recall that both estimators rely on the

BIP-GARCH model.

The estimation of the GARCH parameters using the misspecified BIP-

GARCH model does not seem to create any significant bias in the estimated

parameter values. Of course, we see that in the absence of additive jumps

(i.e., ε = 0%), we pay the price of a loss of efficiency with respect to the QML

estimator. But when ε = 1 or 5%, the QML estimator is largely biased.
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Table 1: Bias and RMSE of the GARCH(1,1) estimated by Gaussian QML estimator and BIP-GARCH(1,1) estimated
by the M-estimator with ρ1 (MY) and ρ2 (Student t4) with and without variance targeting when the DGP is a normal
GARCH(1,1) model with a proportion ε of returns affected by jumps of size d times the conditional standard deviation,
δ = 0.975 and T = 2000.

Bias RMSE Bias RMSE
True QMLE ρ1 ρ2 QMLE ρ1 ρ2 QMLE ρ1 ρ2 QMLE ρ1 ρ2

No variance targeting Variance targeting

ε = 0% µ 0.050 0.000 0.001 0.001 0.023 0.026 0.026 0.001 0.001 0.001 0.023 0.026 0.026
ω 0.100 0.008 0.009 0.009 0.036 0.045 0.041 0.008 0.009 0.008 0.036 0.045 0.040
α1 0.100 0.000 0.006 0.006 0.020 0.026 0.024 0.000 0.006 0.005 0.020 0.025 0.023
β1 0.800 -0.009 -0.015 -0.014 0.049 0.062 0.056 -0.009 -0.015 -0.013 0.049 0.062 0.056
h 1.000 -0.000 0.003 0.012 0.066 0.077 0.075 -0.001 0.003 0.003 0.067 0.074 0.074

ε = 1%, µ 0.050 0.020 0.004 0.004 0.030 0.026 0.026 0.020 0.004 0.005 0.031 0.026 0.026
d = 3 ω 0.100 0.029 0.012 0.013 0.057 0.049 0.045 0.028 0.012 0.012 0.056 0.050 0.044

α1 0.100 -0.003 0.002 0.003 0.024 0.025 0.023 -0.004 0.004 0.001 0.023 0.025 0.022
β1 0.800 -0.019 -0.015 -0.013 0.064 0.066 0.059 -0.018 -0.015 -0.013 0.064 0.066 0.058
h 1.000 0.065 -0.008 0.029 0.097 0.075 0.079 0.058 0.013 0.013 0.091 0.076 0.076

ε = 1%, µ 0.050 0.027 0.003 0.003 0.035 0.026 0.026 0.027 0.003 0.003 0.035 0.026 0.026
d = 4 ω 0.100 0.062 0.010 0.014 0.099 0.049 0.046 0.060 0.011 0.013 0.098 0.049 0.044

α1 0.100 -0.002 0.001 0.003 0.030 0.025 0.024 -0.005 0.004 0.000 0.029 0.025 0.022
β1 0.800 -0.043 -0.014 -0.014 0.098 0.066 0.060 -0.041 -0.015 -0.013 0.098 0.066 0.058
h 1.000 0.122 -0.025 0.034 0.145 0.076 0.081 0.104 0.011 0.011 0.128 0.076 0.076

ε = 5%, µ 0.050 0.103 0.022 0.022 0.106 0.034 0.034 0.103 0.022 0.022 0.106 0.034 0.034
d = 3 ω 0.100 0.169 0.021 0.042 0.251 0.073 0.087 0.169 0.034 0.031 0.252 0.086 0.073

α1 0.100 -0.028 -0.014 -0.014 0.046 0.030 0.029 -0.030 -0.007 -0.018 0.046 0.029 0.030
β1 0.800 -0.078 -0.010 -0.014 0.186 0.085 0.085 -0.079 -0.021 -0.006 0.186 0.093 0.079
h 1.000 0.307 -0.032 0.110 0.319 0.081 0.131 0.300 0.060 0.060 0.311 0.100 0.100

ε = 5%, µ 0.050 0.137 0.012 0.013 0.140 0.029 0.029 0.137 0.013 0.013 0.139 0.029 0.029
d = 4 ω 0.100 0.306 0.008 0.056 0.468 0.056 0.109 0.397 0.031 0.029 0.539 0.074 0.077

α1 0.100 -0.061 -0.014 -0.017 0.079 0.027 0.032 -0.059 -0.001 -0.024 0.075 0.027 0.034
β1 0.800 -0.100 -0.005 -0.021 0.281 0.072 0.101 -0.164 -0.025 0.000 0.313 0.082 0.086
h 1.000 0.547 -0.107 0.135 0.556 0.126 0.154 0.536 0.046 0.046 0.545 0.091 0.091
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2.2 Sensitivity to sample size

The bias and RMSE of the BIP–cDCC and the benchmark QML estimator of

the parameters of the unobserved GARCH(1,1)–cDCC process Yt are shown in

Table 2. Consider first the bias and RMSE for the parameters of the univariate

GARCH model for s∗1,t. In line with the results in MY and Carnero, Peña, and

Ruiz (2012), we find that the estimation of the GARCH parameters using the

misspecified BIP–GARCH model does not seem to create any significant bias

in the estimated parameter values. Of course, we see that in the absence of

additive jumps (i.e., ε = 0%), we pay the price of a loss of efficiency with

respect to the QML estimator. But when ε = 1 or 5%, the QML estimator is

severely biased.

The last three columns of Table 2 present the results for the multivariate

case. Like in the univariate case, the estimation of the cDCC parameters

using the BIP–cDCC models does not seem to create any significant bias in

the estimated parameter values in the absence of jumps (i.e., ε = 0%). The

average of the estimated parameters is very close to the true values. Since the

innovations have a conditionally Gaussian distribution, the Gaussian QML

estimator based on the correctly specified GARCH model is expected to have

(at least asymptotically) the lowest RMSE.

The loss of efficiency of the robust estimator in the absence of additive

jumps is moderate compared to the lower bias and gain in efficiency in the

presence of these jumps. For ε = 1 or 5% of additive jumps, we find the em-

pirical correlation of the devolatilized returns to be a strongly biased estimate

of Q1,2. Because jumps have the opposite sign and the true correlation is 0.4,

we find a negative bias of -5.5% when ε = 1% and d = 3 and -33.9% when

ε = 5% and d = 4. The persistency parameter β also is largely underesti-

mated. Its bias is -5.7% when ε = 1% and d = 3 and -21.9% when ε = 5% and

d = 4. When ε = 1%, the bias in the QML estimate of α is still negligible, but

for ε = 5% with d = 4, we find a bias of -8.4%.

Importantly, in all cases, the bias and RMSE of the estimates of the pro-

posed robust estimator remains small in the presence of additive jumps.
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Table 2: Bias and RMSE of the Gaussian QML and robust estimator for the 2-
dimensional cDCC model in presence of ε jumps of size d conditional standard
deviation, with δ = 0.975 and T = 2000.

µ ω α1 β1 h Q12 α β

0.050 0.100 0.100 0.800 1.000 0.400 0.100 0.800

ε = 0% QML bias 0.001 0.008 0.000 -0.009 -0.001 -0.001 -0.001 -0.007
RMSE 0.023 0.036 0.020 0.049 0.067 0.039 0.019 0.045

Robust bias 0.001 0.008 0.005 -0.013 0.003 -0.011 -0.002 -0.006
RMSE 0.026 0.040 0.023 0.056 0.074 0.040 0.021 0.051

ε = 1% QML bias 0.020 0.028 -0.004 -0.018 0.058 -0.055 -0.010 -0.057
d = 3 RMSE 0.031 0.056 0.023 0.064 0.091 0.067 0.033 0.124

Robust bias 0.005 0.012 0.001 -0.013 0.013 -0.016 -0.007 -0.006
RMSE 0.026 0.044 0.022 0.058 0.076 0.041 0.022 0.055

ε = 1% QML bias 0.027 0.060 -0.005 -0.041 0.104 -0.092 -0.008 -0.125
d = 4 RMSE 0.035 0.098 0.029 0.098 0.128 0.101 0.043 0.203

Robust bias 0.003 0.013 0.000 -0.013 0.011 -0.016 -0.007 -0.006
RMSE 0.026 0.044 0.022 0.058 0.076 0.041 0.022 0.055

ε = 5% QML bias 0.103 0.169 -0.030 -0.079 0.300 -0.230 -0.070 -0.166
d = 3 RMSE 0.106 0.252 0.046 0.186 0.311 0.233 0.080 0.277

Robust bias 0.022 0.031 -0.018 -0.006 0.060 -0.037 -0.034 0.015
RMSE 0.034 0.073 0.030 0.079 0.100 0.053 0.042 0.094

ε = 5% QML bias 0.137 0.397 -0.059 -0.164 -0.536 -0.339 -0.084 -0.219
d = 4 RMSE 0.106 0.252 0.046 0.186 0.311 0.341 0.090 0.284

Robust bias 0.013 0.029 -0.024 0.000 0.046 -0.033 -0.039 0.026
RMSE 0.029 0.077 0.034 0.086 0.091 0.051 0.046 0.100

The bias and RMSE of the parameters underlying h1,t and h2,t are similar. To save space, we only report

those for h1,t.

In Table 3 of this webappendix, we repeat the analysis for T = 1000 and

obtain similar conclusions.

2.3 Sensitivity to parameter choice

In the main paper we report the bias and RMSE of the Gaussian QML and

robust BIP M-estimator for unconditional correlation Q and the dependence

parameters α and β of the 2-dimensional cDCC model in presence of ε jumps

of size d conditional standard deviation, with δ = 0.975 and T = 2000 and

α + β = 0.95. In Figures 2-2 we see that similar results are obtained for
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Table 3: Bias and RMSE of the QML and BIP M–estimates of the parameters
of the cDCC model, δ = 0.975 and T = 1000 or T = 2000.

T = 1000 T = 2000
bias RMSE bias RMSE

QMLE BIP–M QMLE BIP–M QMLE BIP–M QMLE BIP–M

ε = 0% Q1,2 -0.002 -0.011 0.055 0.054 -0.001 -0.011 0.039 0.040

α -0.001 -0.002 0.027 0.029 -0.001 -0.002 0.019 0.021
β -0.016 -0.017 0.073 0.083 -0.007 -0.006 0.045 0.051

ε = 1% Q1,2 -0.052 -0.016 0.075 0.056 -0.055 -0.016 0.067 0.041
d = 3 α -0.007 -0.006 0.043 0.030 -0.010 -0.007 0.033 0.022

β -0.068 -0.017 0.161 0.088 -0.057 -0.006 0.124 0.055

ε = 1% Q1,2 -0.087 -0.016 0.104 0.056 -0.092 -0.016 0.101 0.041
d = 4 α -0.006 -0.006 0.055 0.031 -0.008 -0.007 0.043 0.022

β -0.119 -0.018 0.214 0.089 -0.125 -0.006 0.203 0.055

ε = 5% Q1,2 -0.227 -0.038 0.233 0.066 -0.230 -0.037 0.233 0.053

d = 3 α -0.067 -0.032 0.082 0.047 -0.070 -0.034 0.080 0.042
β -0.142 -0.005 0.248 0.134 -0.166 0.015 0.277 0.094

ε = 5% Q1,2 -0.334 -0.334 0.338 0.338 -0.339 -0.033 0.341 0.051

d = 4 α -0.079 -0.079 0.089 0.089 -0.084 -0.039 0.090 0.046
β -0.203 -0.203 0.277 0.277 -0.219 0.026 0.284 0.100

α + β = 0.98.
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Figure 1: Bias of the Gaussian QML and robust BIP M-estimator for un-
conditional correlation Q and the dependence parameters α and β of the 2-
dimensional cDCC model in presence of ε jumps of size d conditional standard
deviation, with δ = 0.975 and T = 2000. α + β = 0.98.
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Figure 2: RMSE of the Gaussian QML and robust BIP M-estimator for un-
conditional correlation Q and the dependence parameters α and β of the 2-
dimensional cDCC model in presence of ε jumps of size d conditional standard
deviation, with δ = 0.975 and T = 2000. α + β = 0.98.
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3 Applications

To save space in the main manuscript, the case study on Apple is presented in

this webappendix (Subsection 3.1). Additional figures and tables regarding the

application to forecasting the conditional variance and covariance of exchange

rates and stock returns are given in Subsections 3.2-3.3.

3.1 Case study on Apple

Many volatility models, such as GARCH, are based on the assumption that

each return observation has the same relative impact on future volatility, re-

gardless of the magnitude of the return. This assumption is at odds with

an increasing body of evidence indicating that the largest return observations

have a relatively smaller effect on future volatility than smaller shocks (see for

instance Andersen, Bollerslev, and Diebold, 2007).

One reason is extremely large shocks caused by once–off events that cannot

be expected to influence future volatility much. One example is the stock price

of Apple, which fell 52% on September 29, 2000 after it warned its fourth–

quarter profit would fall well short of Wall Street forecasts.

We employed Gaussian quasi–maximum likelihood (QML) to estimate a

GARCH(1, 1) model on the daily returns on Apple with a sample of one thou-

sand days starting on the first day of 2000 and ending in December 2003. The

results as well as the GARCH specification are reported in Table 4.

Table 4: Impact on GARCH of an extreme Apple return

Sample and method α1 β1 α1 + β1
ω×104

1−α1−β1

1
T

∑T
t=1 ĥt VoV

GARCH full sample 0.157 0.824 0.981 29.421 15.140 1.543
GARCH after outlier 0.019 0.976 0.995 8.000 12.038 0.827
BIP–GARCH full sample 0.029 0.969 0.999 11.630 10.997 0.681

Note: The GARCH(1, 1) specification for the daily return series of Apple (yt) is yt =
√
htzt

where zt
i.i.d.
∼ N(0, 1) and ht = ω + α1y2t−1 + β1ht−1. The robust GARCH specification is given in (??).

VoV (volatility of volatility) is the standard deviation of
√

ĥt. The estimated volatilities are expressed in

percentage points.

We then estimated the model using returns only after September 29, 2000

13



(we dummied out that day and got the same results). Including the extreme

observation increases α1 from 0.019 to 0.157, decreases β1 from 0.979 to 0.824

and increases the long–run variance from 8× 10−4 to about 30× 10−4. Includ-

ing this once–off explainable event in the sample thus strongly blows up the

parameter estimates and, as a consequence, the out–of–sample forecasts. We

denote this as extreme bias.

For comparison, we estimated a model taking this into account, the BIP–

GARCH model discussed below, and found that the results are not affected

much by the extreme observation. This can be seen in Figure 3 where we plot

the daily Apple returns and the volatility forecasts obtained by the GARCH

and BIP–GARCH model. We find that in the standard model the volatility

shoots up sharply following the event, and conditional volatility forecasts are

higher on average throughout the sample than when the BIP procedure is used.
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Figure 3: Daily returns in % (upper panel) for Apple and estimated conditional
standard deviation for the GARCH and BIP–GARCH (lower panel) on the
period 2000-2003.

Table 4 also reports two summary statistics on the estimated conditional
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volatilities. We see that the mean variance estimate from the GARCH model

is only half of its value predicted by the model parameters, while for the BIP

GARCH model, these values are very close. A final interesting observation is

the difference in the estimated volatility of volatility for the two models. It is

1.543 for the GARCH model and only 0.681 for the BIP–GARCH model.

In conclusion, with this sample, the use of the BIP–GARCH model to

forecast volatility lead to much more stable volatility forecasts, as is also clear

from the time series plot of volatilities in Figure 3.

The effect of extremes on univariate volatility forecasting can equally be

expected to be present in the forecasting of correlations. While little research

has demonstrated the impact of extreme observations for correlations, it is

readily demonstrated, e.g. by adding one asset to the example with Apple,

e.g. Microsoft. Figure 4 plots the daily returns (in %) for these two series.

Note the 20% return on the Microsoft stock price, triggered by the once–off

event of Microsoft posting first–quarter net income of 46 cents per share, 12

percent above the mean analyst estimate of 41 cents. The same day the stock

price of Apple fell by 6%.

Table 5 shows that the effect of this extreme is to cause cDCC conditional

correlations to drop in one day from 21.5% to only 3.2%, while historically

the average conditional correlation is around 45%. The effect of this extreme

is persistent, since it takes more than a month for the estimated conditional

correlation to return to its level before the once–off event.

Table 5: Apple/MSFT return and extremes, impact on cDCC–GARCH. Esti-
mation on the full sample (i.e., January 2000 – December 2003).

cDCC parameters Correlations
t0 = Oct 19, 2000

Method Q12 α β R̂12,t0 R̂12,t0+1 R̂12,t0+5 R̂12,t0+15 R̂12,t0+20

cDCC 0.449 0.026 0.958 0.215 0.032 0.041 0.091 0.167
BIP–cDCC 0.549 0.021 0.956 0.326 0.293 0.288 0.326 0.379

Note: R̂12,t corresponds to the estimated conditional correlation (between Apple and Microsoft) of the

classical and robust DCC models on day t.
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Figure 4: Daily returns in % for Apple and Microsoft (first two panels) and
estimated cDCC and BIP-cDCC conditional correlation (lower panel) for the
period 2000-2003.

For comparison, we estimated a BIP version of the cDCC model and found

the conditional correlation only dropping by 3 percentage points, not 18 points

like the baseline model. We further note the strong difference between the two

unconditional correlation estimates (about 45% for the cDCC and about 55%

for the BIP version) leading the BIP–cDCC correlation to be significantly

higher than the cDCC correlation for almost all days in the sample, as can be

seen in the lower panel of Figure 4.
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3.2 Covariance forecasts exchange rates

The second application is on forecasting the r–step ahead daily conditional

covariance matrix of the EUR/USD and Yen/USD exchange rates over the

period 2004–2009. From the daily returns, rolling estimation samples of 2303

observations are used to produce the out–of–sample r–step ahead daily covari-

ance forecasts, with r = 1, . . . , 10. In Figures 5-7 we report the time series and

scatter plots of the forecasted cDCC and BIP–cDCC variances and covariances.
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Figure 5: Time series plot of daily variance and covariance forecasts for
EUR/USD and Yen/USD over the period 2004–2009.
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Figure 6: Scatter plot of daily variance and covariance forecasts for EUR/USD
and Yen/USD over the calm period 2004–2006.
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3.3 Industry portfolios

In the application we apply the BIP model to the problem of optimal port-

folio allocation under bound constraints on the portfolio weights (long only,

and maximum 10%).1 In Table 6 we report the results for the same portfolio

strategy but without bound constraints on the portfolio weights. We see that

the use of the BIP method has no significant impact on the average gross port-

folio return, but for most sectors it reduces significantly the portfolio standard

deviation and turnover.

1The list of tickers for each of the sector portfolios is the following: Consumer Discre-
tionary (tickers: AN, AZO, BBBY, BBY, HRB, CCL, CMCSA, DHI, DV, EK, FDO, F,
GCI, GPS, GPC, GT, HOG, HAR, HAS, HD, IGT, JCI, KSS, LEG, LEN, LTD, LOW, M,
MAR, MAT, MCD, MHP, MDP, NYT, NWL, NKE, JWN, ORLY, ODP, JCP, PHM, RSH,
ROST, SHW, SNA, SWK, SPLS, SBUX, HOT, TGT, TIF, TWX, TJX, URBN, VFC, DIS,
WPO, WHR), Consumer Staples (ADM, AVP, CAG, CCE, CL, CLX, COST, CPB, CVS,
GIS, HNZ, HRL, HSY, K, KMB, KO, KR, MKC, MO, PEP, PG, SLE, STZ, SVU, SWY,
SYY, TAP, TSN, WAG, WFM, WMT ), Energy (APA, APC, BHI, CHK, COG, COP, CVX,
DVN, EOG, EP, HAL, HES, HP, MEE, MRO, MUR, NBL, NBR, NE, NFX, OXY, RDC,
RRC, SLB, SUN, SWN, TSO, VLO, WMB, XOM), Financials (ACE, AFL, AIG, ALL,
AON, AXP, BAC, BBT, BEN, BK, C, CB, CINF, CMA, EFX, EQR, FHN, FITB, HBAN,
HCN, HCP, HST, JPM, KEY, KIM, L, LM, LNC, LUK, MI, MMC, MS, MTB, NTRS,
PBCT, PCL, PGR, PNC, PSA, RF, SCHW, SLM, SPG, STI, STT, TMK, TROW, TRV,
UNM, USB, VNO, WFC, XL, ZION), Healthcare (ABT, AET, AGN, AMGN, BCR, BAX,
BDX, BIIB, BSX, BMY, CAH, CELG, CEPH, CERN, CI, CVH , XRAY, ESRX, FRX,
GILD, HUM, JNJ, LH, LLY, MDT, MRK, MYL, PDCO, PKI, PFE, STJ, SYK, THC,
TMO, UNH, VAR, WPI), Industrials (APH, AVY, BA, CAT, CMI, CSX, CTAS, DE, DHR,
DNB, DOV, EMR, ETN, EXPD, FAST, FDX, FLS, GD, GE, GLW, GR, GWW, HON, IR,
ITW, JEC, LMT, LUV, MAS, MMM, NOC, NSC, PBI, PCAR, PCP, PH, PLL, R, RHI,
ROK, ROP, RRD, RTN, TXT, TYC, UNP, UTX, WM), IT (AAPL, ADBE, ADI, ADP,
ADSK, ALTR, AMAT, AMD, BMC, CA, CPWR, CSC, CSCO, DELL, EMC, ERTS, FISV,
FLIR, HPQ, HRS, IBM, INTC, INTU, JBL, JDSU, KLAC, LLTC, LSI, MCHP, MOLX,
MSFT, MSI, MU, NSM, NVLS, ORCL, PAYX, QCOM, SYMC, TER, TLAB, TSS, TXN,
WDC, XLNX, XRX), and Materials (AA, APD, ARG, BLL, BMS, CLF, DD, DOW, ECL,
EMN, FMC, IFF, IP, MWV, NEM, NUE, OI, PPG, PX, SEE, SIAL, VMC, WY, X).
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Table 6: Summary statistics on out–of–sample performance of minimum variance portfolios based on the BIP–cDCC
vs cDCC model: gross returns (annualized mean, standard deviation), portfolio turnover and difference in annualized
Sharpe ratio when the proportional trading cost is κ.

cDCC BIP–cDCC ∆ SR BIP–cDCC vs cDCC

mean SD Turn mean SD Turn κ = 0 1e− 4 1e− 3
2004-2006
Cons.Staples 0.072 0.101∗∗∗ 0.482∗∗∗ 0.102 0.088∗∗∗ 0.244∗∗∗ 0.443 0.490 0.933∗∗

Energy 0.518 0.297∗∗∗ 1.953∗∗∗ 0.307 0.186∗∗∗ 0.707∗∗∗ -0.095 -0.032 0.601
Financials 0.354∗∗ 0.158 1.961∗∗∗ 0.076∗∗ 0.138 0.665∗∗∗ -1.692 -1.502 0.221
Healthcare 0.024 0.173∗∗∗ 1.018∗∗∗ 0.102 0.112∗∗∗ 0.329∗∗∗ 0.759 0.838 1.502∗∗∗

Industrials 0.065 0.150∗∗∗ 1.427∗∗∗ 0.154 0.097∗∗∗ 0.465∗∗∗ 1.138∗∗ 1.265∗∗ 2.324∗∗∗

IT 0.075 0.138 0.641∗∗∗ 0.141 0.135 0.496∗∗∗ 0.506 0.522 0.743
Materials 0.221 0.307∗∗∗ 1.262∗∗∗ 0.127 0.126∗∗∗ 0.394∗∗∗ 0.285 0.316 0.538
2007-2009
Cons.Staples -0.050 0.178∗∗ 0.602∗∗∗ -0.041 0.167∗∗ 0.351∗∗∗ 0.032 0.063 0.348
Energy -0.042 0.381∗∗∗ 1.494∗∗∗ -0.044∗∗∗ 0.348 1.002∗∗∗ -0.016 0.016 0.253
Financials -0.128 0.333∗∗∗ 1.514∗∗∗ -0.063 0.236∗∗∗ 0.603∗∗∗ 0.126 0.174 0.617
Healthcare -0.023 0.202∗∗∗ 0.652∗∗∗ -0.048 0.174∗∗∗ 0.390∗∗∗ -0.158 -0.126 0.095
Industrials -0.107 0.264∗∗∗ 1.355∗∗∗ -0.139 0.215∗∗∗ 0.667∗∗∗ -0.237 -0.190 0.269
IT -0.043 0.272∗∗ 0.768 -0.047 0.245∗∗ 0.748 -0.032 -0.032 -0.095
Materials 0.097 0.325∗∗∗ 0.944∗∗∗ -0.041 0.266∗∗∗ 0.529∗∗∗ -0.459 -0.427 -0.221

∗∗∗, ∗∗ and ∗ indicate significant differences between BIP–cDCC and cDDC at the 1%, 5% and 10% level respectively.
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