Modeling dynamic diurnal patterns in high frequency financial data

Ryoko Ito

Faculty of Economics, Cambridge University
Email: ri239@cam.ac.uk
Website: www.itoryoko.com

This paper: Cambridge Working Papers in Economics CWPE1315

OxMetrics User Conference, Sept 2014
We want to model **daily periodic patterns** (diurnal patterns) in high-frequency financial data.

Popular ways to capture periodicity:

- Fourier flexible form approximation
- Compute (re-scaled) sample moments for each intra-day bins

The pattern of periodicity is fixed over time. (e.g. Andersen and Bollerslev (1998), Engle and Russell (1998), Shang et al. (2001), Campbell and Diebold (2005), Engle and Rangel (2008), Brownlees et al. (2011), Engle and Sokalska (2012).)

Contribution: **dynamic cubic spline** to model periodicity (c.f. Harvey and Koopman (1993)). Advantages:

- Parsimonious. One-step estimation with all other coefficients.
- Dynamic periodicity.
- Fits the empirical distribution of our data well (including the upper extreme quantiles).
Also need to capture other stylized features

- Concentration of zero-observations
- Non-normality, heavy tail
- Highly persistent dynamics (long-memory?)

Methods:

- Distribution decomposition at zero
- **Dynamic Conditional Score** (Harvey (2013)) to capture non-normality, heavy-tail
- Unobserved components
Data (short sampling period): empirical features

- **Trade volume** of IBM stock traded on the NYSE. The number of shares traded.
- Period: 5 consecutive trading weeks in February - March 2000
- Aggregation interval: 30 seconds (15 seconds – 1 minute also in the paper)

Figure: IBM30s (left column) and the same series smoothed by the simple moving average (right column). Time on the x-axis. Monday 20 - Friday 24 March 2000. Each day covers trading hours between 9.30am-4pm (in the New York local time).
Empirical features (short sampling period)

Diurnal U-shaped patterns.
Trade volume “bottoms out” at around 1pm.

Figure: IBM30s (left column) and the same series smoothed by the simple moving average (right column). Time on the x-axis. Wednesday 22 March 2000, covering 9.30am-4pm (in the New York local time).
Empirical features

Sample autocorrelation. Highly persistent.

Heavy, long upper-tail.

Figure: Sample autocorrelation of IBM30s. Sampling period: 28 February - 31 March 2000. The 200th lag corresponds approximately to 1.5 hours prior.

Figure: Frequency distribution (top) and empirical cdf (bottom) of IBM30s. Sample: 28 February - 31
Data (long sampling period): empirical features

- **Trade volume** of IBM stock traded on the NYSE. The number of shares traded.
- In-sample period: January 2007 - December 2010 (4 years)
- Aggregation interval: 10 minutes

Figure: Left: IBM10m between Mon 7 Jan - Fri 11 Jan 2008. Each day covers trading hours between 9.30am-4pm (in the New York local time). Right: autocorrelation of IBM10m, Jan 2007 - Dec 2010.
The model

- **Spline-DCS model.**

 \[y_{t,\tau} = \varepsilon_{t,\tau} \exp(\lambda_{t,\tau}), \quad \varepsilon_{t,\tau} | \mathcal{F}_{t,\tau-1} \sim \text{i.i.d. } F(\varepsilon; \theta) \]

 \[\lambda_{t,\tau} = \delta + s_{t,\tau} + \mu_{t,\tau} + \eta_{t,\tau} \]

- **\(s_{t,\tau} \): periodic component** capturing diurnal patterns

- **\(\mu_{t,\tau} \): low-frequency nonstationary component.**

 \[\mu_{t,\tau} = \mu_{t,\tau-1} + \kappa_{\mu} u_{t,\tau-1} \]

- **\(\eta_{t,\tau} \): stationary component.** A mixture of AR to capture behavior similar to long-memory.

 \[\eta_{t,\tau} = \eta_{t,\tau}^{(1)} + \eta_{t,\tau}^{(2)}, \quad \eta_{t,\tau}^{(1)} = \phi_{1}^{(1)} \eta_{t,\tau-1}^{(1)} + \phi_{2}^{(1)} \eta_{t,\tau-2}^{(1)} + \kappa_{\eta}^{(1)} u_{t,\tau-1} \]

 \[\eta_{t,\tau}^{(2)} = \phi_{1}^{(2)} \eta_{t,\tau-1}^{(2)} + \kappa_{\eta}^{(2)} u_{t,\tau-1} \]

- **\(u_{t,\tau} \): the score** of distribution of \(y_{t,\tau} \) (i.e. \(\partial f_{y}(y_{t,\tau})/\partial \lambda_{t,\tau} \)).

DCS = dynamic conditional score [Harvey (2013) and Creal, Koopman, and Lucas (2011, 2013)]
Dynamic cubic spline

- $s_{t,\tau}$: dynamic cubic spline (Harvey and Koopman (1993))

$$s_{t,\tau} = \sum_{j=1}^{k} \mathbb{1}_{\{\tau \in [\tau_{j-1}, \tau_j]\}} \mathbb{1}_{\tau} (\tau) \cdot \gamma$$

- **Fixed v.s. dynamic spline**: let $\gamma \rightarrow \gamma_{t,\tau}$ where

$$\gamma_{t,\tau} = \gamma_{t,\tau-1} + \kappa^* \cdot u_{t,\tau-1}$$

Figure: Fixed spline (left) and dynamic spline (right).
Dynamic cubic spline (ctd)

- $s_{t,\tau}$: dynamic cubic spline (Harvey and Koopman (1993))

\[s_{t,\tau} = \sum_{j=1}^{k} \mathbb{1}_{\{\tau \in [\tau_{j-1}, \tau_{j}]\}} z_{j}(\tau) \cdot \gamma \]

- k: number of knots
- $\tau_0 < \tau_1 < \cdots < \tau_k$: coordinates of the knots along time-axis
- $\gamma = (\gamma_1, \ldots, \gamma_k)^\top$: y-coordinates (height) of the knots
- $z_{j} : [\tau_{j-1}, \tau_{j}]^{k} \rightarrow \mathbb{R}^{k}$: k-dimensional vector of weighting functions. Conveys information about (i) polynomial order, (ii) continuity, (iii) length of periodicity, and (iv) zero-sum conditions.
- Bowsher and Meeks (2008): “special type of dynamic factor model”
- Time-varying spline: let $\gamma \rightarrow \gamma_{t,\tau}$ where

\[\gamma_{t,\tau} = \gamma_{t,\tau-1} + k^* \cdot u_{t,\tau-1} \]
Why use this dynamic spline?

Alternative options used by many:

- Fourier representation
- Sample moments for each intra-day bins
- Diurnal pattern = deterministic function of intra-day time

So why use this spline?

- Allows for changing diurnal patterns (can improve upper quantile fit)
- No need for a two-step procedure to “diurnally adjust” data
- Allow for the day-of-the-week effect via changes in shape of diurnal patterns as well as level shift.
 - Unlike the alternative: seasonal dummies. Test for level differences. Used by many (e.g. Andersen and Bollerslev (1998), Lo and Wang (2010))
Core assumption: $\hat{\epsilon}_{t,\tau} = y_{t,\tau}/\exp(\hat{\lambda}_{t,\tau})$ has to be free of autocorrelation.
Satisfied - no autocorrelation in $\hat{\epsilon}_{t,\tau}$.

Figure: IBM30s: sample autocorrelation of trade volume (top), of $\hat{\epsilon}_{t,\tau}$ (left). The 95% confidence interval is computed at ± 2 standard errors.
Estimation results (short sample period)

$F \sim \text{GB2}$ distribution fits very well. ($\text{GB2} = \text{generalized beta distribution of the second kind}$.)

PIT: $F(\hat{\varepsilon}_{t,\tau}) \sim \text{U}[0,1]$. Fit seems to be the best when our spline is time-varying.

Figure: Empirical cdf of $\hat{\varepsilon}_{t,\tau} > 0$ against cdf of GB2 ($\hat{\nu}, \hat{\zeta}, \hat{\xi}$) (left). Empirical cdf of the PIT of $\hat{\varepsilon}_{t,\tau} > 0$ computed under $F(\cdot; \theta) \sim \text{GB2} (\hat{\nu}, \hat{\zeta}, \hat{\xi})$ (right).
Compare with log-normal distribution

- Log-normal distribution popular. Often used in literature. (e.g. Alizadeh, Brandt, Diebold (2002))
- But log-normal inferior to GB2.
- PIT of $\hat{\varepsilon}_{t,\tau}$ far from $U[0,1]$. Why?

Figure: \textbf{Log(trade volume)}: The frequency distribution (left) and the QQ-plot (right). Using non-zero observations re-centered around mean and standardized by one standard deviation.
Estimated coefficients

<table>
<thead>
<tr>
<th></th>
<th>IBM30s</th>
<th>IBM1m</th>
<th>IBM30s</th>
<th>IBM1m</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_{μ}</td>
<td>0.006 (0.001)</td>
<td>0.007 (0.002)</td>
<td>$\gamma_{0;1,0}$</td>
<td>1.273 (0.106)</td>
</tr>
<tr>
<td>$\phi_{1}^{(1)}$</td>
<td>0.557 (0.136)</td>
<td>0.377 (0.093)</td>
<td>$\gamma_{1;1,0}$</td>
<td>0.078 (0.058)</td>
</tr>
<tr>
<td>$\phi_{2}^{(1)}$</td>
<td>0.410 (0.135)</td>
<td>0.567 (0.096)</td>
<td>$\gamma_{2;1,0}$</td>
<td>-0.469 (0.070)</td>
</tr>
<tr>
<td>$\kappa_{\eta}^{(1)}$</td>
<td>0.049 (0.007)</td>
<td>0.045 (0.008)</td>
<td>$\gamma_{3;1,0}$</td>
<td>-0.227 (0.047)</td>
</tr>
<tr>
<td>$\phi_{1}^{(2)}$</td>
<td>0.688 (0.041)</td>
<td>0.621 (0.057)</td>
<td>ω</td>
<td>9.146 (0.174)</td>
</tr>
<tr>
<td>$\kappa_{\eta}^{(2)}$</td>
<td>0.092 (0.008)</td>
<td>0.069 (0.008)</td>
<td>ν</td>
<td>1.631 (0.016)</td>
</tr>
<tr>
<td>κ_{0}^{*}</td>
<td>0.003 (0.002)</td>
<td>0.003 (0.002)</td>
<td>ζ</td>
<td>1.486 (0.045)</td>
</tr>
<tr>
<td>κ_{1}^{*}</td>
<td>0.001 (0.001)</td>
<td>0.000 (0.001)</td>
<td>p</td>
<td>0.0047 (0.0005)</td>
</tr>
<tr>
<td>κ_{2}^{*}</td>
<td>-0.002 (0.001)</td>
<td>-0.002 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>κ_{3}^{*}</td>
<td>0.000 (0.001)</td>
<td>0.000 (0.001)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parametric assumptions, identifiability requirements satisfied.

$\eta_{t,\tau}$ stationary.

\hat{p} is consistent with sample statistics.
Estimation results (long sample period): fit of distribution

\[\varepsilon_{t,\tau} \sim \text{GB2} \text{ fits very well. PIT: } F(\hat{\varepsilon}_{t,\tau}) \sim U[0,1]. \]

Figure: Empirical cdf of \(\hat{\varepsilon}_{t,\tau} > 0 \) against cdf of \(\text{GB2}(\hat{\nu}, \hat{\zeta}, \hat{\xi}) \) (left). Empirical cdf of the PIT of \(\hat{\varepsilon}_{t,\tau} > 0 \) computed under \(F(\cdot; \theta) = \text{GB2}(\hat{\nu}, \hat{\zeta}, \hat{\xi}) \) (right).
Estimation results (long sample period): check autocorrelation in $\hat{u}_{t,\tau}$

Should have $\hat{u}_{t,\tau} \sim \text{i.i.d.}$ [and Beta distributed.]

$s_{t,\tau}$ is **Fourier (left)** and our **fixed spline (right)**. The number of coefficients in $s_{t,\tau}$ are the same.

Figure: IBM10m: sample autocorrelation of $\hat{u}_{t,\tau}$. The periodic component $s_{t,\tau}$ is Fourier (left) and our fixed spline (right). The 95% confidence interval is computed at ± 2 standard errors.
Estimated dynamic cubic spline, $\hat{s}_{t,\tau}$ (long sample period)

$\hat{s}_{t,\tau}$: dynamic cubic spline. Reflects diurnal patterns that evolve over time.

Figure: IBM10m: $\exp(\hat{s}_{t,\tau})$. Sampling period is Jan 2007 - Dec 2010. Trading time between 9.30am-4pm.
Estimated dynamic cubic spline, $\hat{s}_{t, \tau}$

Reflects diurnal patterns that evolve over time.

Figure: $\hat{s}_{t, \tau}$ of Model 2 for IBM30s. Over 6 - 31 March 2000 (left). $\hat{s}_{t, \tau}$ of a typical day, Tuesday 14 March, from market open to close (right). Time along the x-axes.

Day-of-the-week effect? Do we need dynamic periodicity?
Out-of-sample performance (long sample period)

One-step ahead forecasts, $\tilde{\varepsilon}_{t,\tau} = y_{t,\tau}/\exp(\tilde{\lambda}_{t,\tau})$ for 50 days without re-estimating parameters. Forecast horizon: January - March 2011.

Figure: Left: PIT of forecast $\tilde{\varepsilon}_{t,\tau}$, Dynamic Spline. Right: QQ-plot of forecast $\tilde{\varepsilon}_{t,\tau}$, Dynamic Spline (blue) and Fixed Spline (red).
Out-of-sample performance

- Our model and parameter estimates are stable
- One-step ahead density forecasts (without re-estimation): very good for at least 20 days ahead.
- Multi-step ahead density forecasts: very good (i.e. PIT approx. iid $\sim U[0,1]$) for one complete trading-day ahead (equivalent of 780 steps for IBM30s).

More discussions in the paper.
Intuition, future direction

- Dynamic spline can reflect changes in the pattern of morning trading activity (i.e. how we standardize large-sized morning observations).
- Important feature when the amount (or nature) of overnight news can change morning trading patterns.

Still to do:
- Further investigate the performance of the model at the upper-tail.
- Multi-variate version: price and volume.
- Model for higher-frequency: 1 second?
- Application to panel data (using composite likelihood?)
- Asymptotic properties of MLE when DCS non-stationary.
- etc.